α1-Antitrypsin reduces rhinovirus infection in primary human airway epithelial cells exposed to cigarette smoke

نویسندگان

  • Reena Berman
  • Di Jiang
  • Qun Wu
  • Hong Wei Chu
چکیده

Human rhinovirus (HRV) infections target airway epithelium and are the leading cause of acute exacerbations of COPD. Cigarette smoke (CS) increases the severity of viral infections, but there is no effective therapy for HRV infection. We determined whether α1-antitrypsin (A1AT) reduces HRV-16 infection in CS-exposed primary human airway epithelial cells. Brushed bronchial epithelial cells from normal subjects and patients diagnosed with COPD were cultured at air-liquid interface to induce mucociliary differentiation. These cells were treated with A1AT or bovine serum albumin for 2 hours and then exposed to air or whole cigarette smoke (WCS) with or without HRV-16 (5×10(4) 50% Tissue Culture Infective Dose [TCID50]/transwell) infection for 24 hours. WCS exposure significantly increased viral load by an average of fivefold and decreased the expression of antiviral genes interferon-λ1, OAS1, and MX1. When A1AT was added to WCS-exposed cells, viral load significantly decreased by an average of 29-fold. HRV-16 infection significantly increased HRV-16 receptor intercellular adhesion molecule-1 messenger RNA expression in air-exposed cells, which was decreased by A1AT. A1AT-mediated reduction of viral load was not accompanied by increased epithelial antiviral gene expression or by inhibiting the activity of 3C protease involved in viral replication or maturation. Our findings demonstrate that A1AT treatment prevents a WCS-induced increase in viral load and for the first time suggest a therapeutic effect of A1AT on HRV infection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cigarette Smoke Modulates Expression of Human Rhinovirus-Induced Airway Epithelial Host Defense Genes

Human rhinovirus (HRV) infections trigger acute exacerbations of chronic obstructive pulmonary disease (COPD) and asthma. The human airway epithelial cell is the primary site of HRV infection and responds to infection with altered expression of multiple genes, the products of which could regulate the outcome to infection. Cigarette smoking aggravates asthma symptoms, and is also the predominant...

متن کامل

Cyclic stretch augments human rhinovirus induced inflammatory responses in airway epithelial cells

Background Structural cells of the airways are subject to normal mechanical stretch during respiration [1]. Mechanical stretch acts as a mechanism of cell activation, and mechanotransduction pathways have been shown to activate pro-inflammatory genes [2]. Human rhinovirus (HRV) infections are a major cause of asthma exacerbations, and mechanical forces are likely to be more pronounced during as...

متن کامل

Two-dimensional Simulation of Mass Transfer and Nano-Particle Deposition of Cigarette Smoke in a Human Airway

The chance of developing lung cancer is increased through being exposed to cigarette smoke illustrated by studies. It is vital to understand the development of particular histologic-type cancers regarding the deposition of carcinogenic particles, which are present in human airway. In this paper, the mass transfer and deposition of cigarette smoke, inside the human airway, are investigated apply...

متن کامل

Cigarette smoke modulates rhinovirus-induced airway epithelial cell chemokine production.

Human rhinovirus (HRV) infections induce epithelial cell production of chemokines that may contribute to the pathogenesis of exacerbations of chronic obstructive pulmonary disease (COPD) and asthma. Cigarette smoking is the predominant risk factor for the development of COPD and also aggravates asthma symptoms. We examined whether cigarette smoke extract (CSE) modulates viral inflammation by al...

متن کامل

Increased ERK signalling promotes inflammatory signalling in primary airway epithelial cells expressing Z α1-antitrypsin

Overexpression of Z α1-antitrypsin is known to induce polymer formation, prime the cells for endoplasmic reticulum stress and initiate nuclear factor kappa B (NF-κB) signalling. However, whether endogenous expression in primary bronchial epithelial cells has similar consequences remains unclear. Moreover, the mechanism of NF-κB activation has not yet been elucidated. Here, we report excessive N...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016